Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Biol Macromol ; 233: 123483, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2310489

ABSTRACT

A rapid, accurate, easy-to-use nucleic acid detection technology is essential for disease diagnosis and control. Herein, we improved CRISPR-top (cluster regularly interspaced short palindromic repeats-mediated testing in one-pot) to develop Extraction-free one-step CRISPR-assistant detection (ExCad), a simple, rapid, accurate gene detection tool for unextracted colonies and samples. We established a pretreatment protocol to rapidly liquify sputum samples and release nucleic acids within 10 min. The ExCad results can be visualised by a real-time fluorescence reader or the naked eye under blue light. We developed an ExCad-Sp assay to detect Streptococcus pneumoniae from unextracted strains and specimens, and optimised the assay conditions. Assay feasibility was evaluated using sputum samples from 32 patients, and it achieved 92.9 % (13/14) sensitivity, 100 % (18/18) specificity, 100 % (13/13) positive predictive value, and 94.7 % (18/19) negative predictive value compared with bacteria culture. The ExCad-Sp assay has potential for developing an at-home self-testing kit for S. pneumoniae.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Self-Testing
2.
China CDC Wkly ; 5(4): 82-89, 2023 Jan 27.
Article in English | MEDLINE | ID: covidwho-2246252

ABSTRACT

Introduction: The transmissibility of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant poses challenges for the existing measures containing the virus in China. In response, this study investigates the effectiveness of population-level testing (PLT) and contact tracing (CT) to help curb coronavirus disease 2019 (COVID-19) resurgences in China. Methods: Two transmission dynamic models (i.e. with and without age structure) were developed to evaluate the effectiveness of PLT and CT. Extensive simulations were conducted to optimize PLT and CT strategies for COVID-19 control and surveillance. Results: Urban Omicron resurgences can be controlled by multiple rounds of PLT, supplemented by CT - as long as testing is frequent. This study also evaluated the time needed to detect COVID-19 cases for surveillance under different routine testing rates. The results show that there is a 90% probability of detecting COVID-19 cases within 3 days through daily testing. Otherwise, it takes around 7 days to detect COVID-19 cases at a 90% probability level if biweekly testing is used. Routine testing applied to the age group 21-60 for COVID-19 surveillance would achieve similar performance to that applied to all populations. Discussion: Our analysis evaluates potential PLT and CT strategies for COVID-19 control and surveillance.

3.
J Hazard Mater ; 430: 128414, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1665174

ABSTRACT

Coronavirus disease 2019 (COVID-19) has become a worldwide public health emergency, and the high transmission of SARS-CoV-2 variants has raised serious concerns. Efficient disinfection methods are crucial for the prevention of viral transmission. Herein, pulse power-driven cold atmospheric plasma (CAP), a novel sterilization strategy, was found to potently inactivate SARS-CoV-2-like coronavirus GX_P2V, six strains of major epidemic SARS-CoV-2 variants and even swine coronavirus PEDV and SADS-CoV within 300 s (with inhibition rate more than 99%). We identified four dominant short-lived reactive species, ONOO-, 1O2, O2- and·OH, generated in response to CAP and distinguished their roles in the inactivation of GX_P2V and SARS-CoV-2 spike protein receptor binding domain (RBD), which is responsible for recognition and binding to human angiotensin-converting enzyme 2 (hACE2). Our study provides detailed evidence of a novel surface disinfection strategy for SARS-CoV-2 and other coronaviruses.


Subject(s)
COVID-19 , Plasma Gases , Animals , COVID-19/prevention & control , Disinfection , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
4.
Exp Ther Med ; 21(2): 155, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1058546

ABSTRACT

The novel coronavirus (SARS-CoV-2) appeared in2019 in Wuhan, China, and rapidly developed into a global pandemic. The disease has affected not only health care systems and economies worldwide but has also changed the lifestyles and habits of the majority of the world's population. Among the potential targets for SARS-CoV-2 therapy, the viral spike glycoprotein has been studied most intensely, due to its key role in mediating viral entry into target cells and inducing a protective antibody response in infected individuals. In the present manuscript the molecular mechanisms that are responsible for SARS-CoV-2 infection are described and a progress report on the status of SARS-CoV-2 research is provided. A brief review of the clinical symptoms of the condition and current diagnostic methods and treatment plans for SARS-CoV-2 are also presented and the progress of preclinical research into medical intervention against SARS-CoV-2 infection are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL